

BAB III DESKRIPSI PROSES

3.1 Diagram Alir Proses

Diagram alir proses dapat dilihat pada gambar

3.2 Keterangan Proses

Proses produksi metil klorida dari bahan baku metanol dan asam klorida dapat dibagi dalam 3 tahap, yaitu:

- 1. Tahap penyiapan bahan baku
- 2. Tahap Reaksi
- 3. Tahap pemisahan dan pemurnian produk

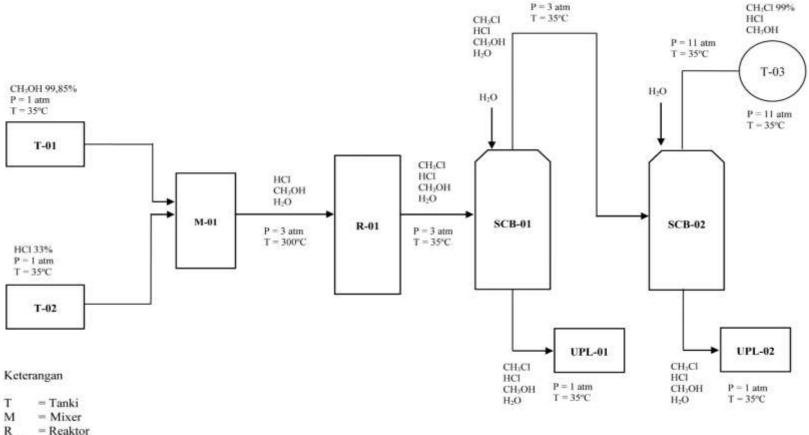
3.2.1 Penyiapan Bahan Baku

Dalam proses pembuatan metil klorida dengan metode hidroklorinasi, bahan baku untuk pembuatan metil klorida adalah metanol dan asam klorida. Metanol cair kemurnian 99,85% disimpan dalam tangki (T-01) pada tekanan 1 atm dan suhu 35°C, kemudian diumpankan ke dalam *Mixer-01* (M-01). HCl konsentrasi 33% yang disimpan dalam tangki (T-02) pada tekanan 1 atm dan suhu 35°C diumpankan ke dalam *Mixer-02* (M-02) untuk dicampurkan dengan metanol.

Pada kondisi *Start Up*, Campuran metanol dan HCl keluaran *Mixer -01* diumpankan ke dalam *Vaporizer-01* (VP-01) untuk diuapkan dan dinaikkan suhunya hingga 300°C kemudian dinaikkan tekanannya menjadi 3 atm menggunakan kompresor dan diumpankan menuju *Reactor-01* (R-01).

Pada kondisi *Steady State*, Campuran metanol dan HCl keluaran *Mixer -01* diumpankan menuju *inlet shell Reactor-01* (R-01) untuk digunakan sebagai pendingin sehingga suhunya naik menjadi 97°C dan berfase gas. Kemudian diumpankan menuju *Heater-01* (HE-01) sehingga suhunya naik menjadi 227°C dengan menggunakan pendingin produk keluaran R-01. Setelah itu, diumpankan menuju *Heater-02* (HE-02) untuk dinaikkan suhunya menjadi 300°C dan dinaikkan tekanannya menjadi 3 atm menggunakan kompresor, kemudian diumpankan menuju reaktor (R-01).

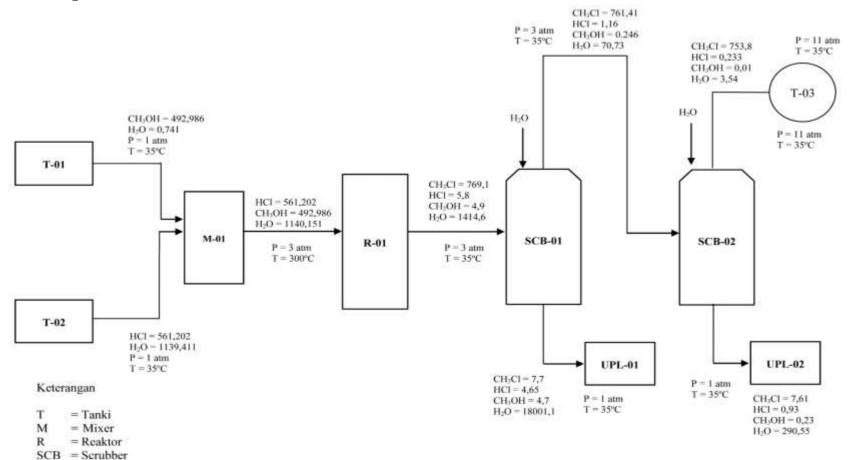
3.2.2 Proses Reaksi dalam Reaktor


Proses reaksi hidroklorinasi metanol dijalankan dalam reaktor fixed bed multitube katalitik (R-01), pada suhu 300°C tekanan 3 atm, perbandingan mol reaktan HCl: metanol adalah 1:1, dengan katalis alumina gel (Al₂O₃) menghasilkan produk metil klorida dengan konversi metanol 99%. Reaksi berjalan secara non isotermal dan eksotermis, sehingga untuk mengontrol suhu reaksi diperlukan media pendingin dengan menggunakan dowtherm A.

3.2.3 Pemisahan dan Pemurnian Produk

Hasil produk yang berupa gas dari reaktor digunakan sebagai pemanas pada *Heater-1* sehingga suhu gas akan menurun. Kemudian didinginkan menggunakan Cooler-01 sebelum masuk ke dalam Scrubber-01 (SCB-01) untuk dipisahkan antara produk (metil klorida) dengan impuritasnya (HCl, metanol, air) pada kondisi operasi suhu 35°C. Hasil bawah SCB-01 berupa HCl, metanol, air, dan sedikit metil klorida selanjutnya diproses pada Unit Penganganan Limbah. Sedangkan hasil atas SCB-01 yang berupa metil klorida, HCl, metanol, dan sedikit air selanjutnya diumpankan menuju Scrubber-02 (SCB-02) untuk dipisahkan lagi antara produk (metil klorida) dengan impuritasnya (HCl, methanol, air) dengan kemurnian 99% suhu 35°C. Hasil bawah Scrubber-02 berupa HCl, metanol, air, dan sedikit metil klorida selanjutnya diproses pada Unit Penanganan Limbah, Sedangkan hasil atas Scrubber-02 yang berupa metil klorida 99%. kemudian diumpankan menuju Tangki penyimpan adibatis dan bertekanan (T-03), serta dinaikkan tekanannya menjadi 11 atm menggunakan kompresor, untuk disimpan dalam fase cair.

3.3 Diagram Alir Kualitatif


= Reaktor

SCB = Scrubber

UPL = Unit Pengolahan Limbah

3.4 Diagram Alir Kuantitatif

UPL = Unit Pengolahan Limbah

Victor Viero A I 25190333D – Teknik Kimia